- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Olugbade, Emmanuel (3)
-
Park, Jonghyun (3)
-
He, Yuchu (2)
-
Hwang, Chulsoon (2)
-
Zhou, Haicheng (2)
-
Lee, Warren (1)
-
McDonnell, Nicholas (1)
-
Pham, Hiep (1)
-
Poort, Marco (1)
-
Rao, Krishna (1)
-
Wang, Hanfeng (1)
-
Wang, Yansheng (1)
-
Xia, Shengxuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The accuracy of single particle (SP) models for lithium-ion batteries at high C-rates is constrained by lithium concentration gradients in the electrolyte, which affect ionic conductivity, overpotential, and reaction rates. This study addresses these limitations using extreme gradient boosting machine learning (ML). By training our ML model with data from a comprehensive electrochemical (P2D) model and performing sensitivity analysis on key battery parameters, we enhance predictive accuracy. Compared to conventional SP and P2D models under constant current loading, our ML-based SP model achieves similar predictive accuracy to P2D, with significant improvements in computational efficiency. Additionally, the ML-based SP model demonstrates improved predictive accuracy under dynamic loading conditions, providing a practical framework for improving battery management and safety.more » « less
-
Olugbade, Emmanuel; Pham, Hiep; He, Yuchu; Zhou, Haicheng; Hwang, Chulsoon; Park, Jonghyun (, 2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI))
-
Xia, Shengxuan; Olugbade, Emmanuel; He, Yuchu; Wang, Yansheng; Wang, Hanfeng; Rao, Krishna; Poort, Marco; Zhou, Haicheng; Lee, Warren; McDonnell, Nicholas; et al (, 2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI))
An official website of the United States government
